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ABSTRACT

The evaluation of aerodynamic derivatives from
flight data based on system identification is cons-
idered. The estimation procedure includes the equa-
tion error method, the output error method and the
generalized maximum likelihood method. The problems
concerning accuracy, sensitivity and identifiability
are also discussed. The general computing algorithm
for the first two methods and the future development
in the area of aircraft parameter estimation are
briefly mentioned.

The maximum likelihood estimation technique is
demonstrated in two examples., The first example
includes the longitudinal short period motion of a
slender delta-wing research aircraft, the second one
the lateral motion of a fighter aircraft,

1., INTRODUCTION

The aerodynamic derivatives of an aircraft are
the partial derivatives of aerodynamic forces and
moments acting on the aircraft with respect to its
state variables (the stability derivatives) and in-
put variables (the control derivatives). The values
of these derivatives can be obtained from theoret-
ical calculations, wind-tunmel test and in-flight
measurement.

Previous approaches to the evaluation of aero-
dynamic derivatives from flight data were based
mainly on time consuming steady—state measurements
and on the measurement of free oscillations. The
analysis of transient manoeuvres based upon the least
squares procedure was firstly proposed by Greenberg
(1) and Shimbrot (2) . It was, however, applied to
very simple manoeuvres and it resulted in only limit-
ed information about system parameters and their
accuracies,

For the practical analysis of more complicated
manoeuvres the analog-matching technique has been
used. This technique minimizes the errors of the
various responses iteratively through the human
operation.

Finally the increased availability of modern
digital computers made the application of more soph-
isticated techniques for the estimation of aircraft
parameters (and thus of non-dimensional aerodynamic
derivatives) feasible., These new techniques are
part of a general strategy and process called ident-
ification which can establish the properties of any
system by the measurement of its input and output
time histories.

The identification of an aireraft using modern
control theory, theory of statistical inference and
new digital techniques has brought qualitatively new
ways of aircraft testing and flight data analysis.
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This approach enables us to evaluate from one test
run all the stability and control derivatives invol-
ved or their combinations, together with their ac-
curacies and confidence intervals. At the same time
the accuracy of measured data is also estimated so
that this data can be used in the analysis with a
corresponding level of confidence.

I1f necessary, there is the possibility of sep-—
arating the measurement noise in the output variabl-
es from the external disturbances to the system
caused by gust effects or modelling errors (process
noise) .

The identification techniques give the opport-
unity of including in the analysis the a priori
knowledge of aircraft parameters obtained from wind-
tunnel measurements or previous flight measurement.

Finally the identification methods provide
tools for a proper design of an experiment (e.g.
optimal input form) to obtain the most accurate
results and for testing the hypothesis about the
correct form of the mathematical model describing
the analysed motion of an aircraft.

Substantial contributions in the field of air-
craft identification were made by several authors
(3) - (7) and by the NASA as an organisation.

At the Cranfield Institute of Technology (C.I.T)
the research in aircraft identification was initia-
ted about three years ago. Some of the results
achieved are presented in

2, IDENTIFICAYION

Zadeh defines the identification as "Identifi-
cation is the determination, on the basis of input
and output, of a system within a specified class of
systems, to which the system under test is equiva-
lent.” (9)

Using this formulation it is necessary to
specify a class of systems, a class of input signals
and the meaning of "equivalent,"” and then to
essemble the a priori kmewledge on the structure of
the mathematical model for the system under test
and measurements of the input and output variables.
The identification procedure involves generally
three steps, namely characterization, parameter
and state estimation and verification.

2.1 Characterization

Characterization is a qualitative operation
defining the structure of a system. In the case of
aircraft identification the system is usually
assumed to be deterministic with time invariant
parameters described by the set of linear or non-
linear differential equations. The unknown para-
meters include, in general, the coefficients of



equations of motion, initial conditions and constant
bias terms in measured. output variables. The meas-
ured variables are used in the form of sampled time
histories with a constant sampling rate.

To represent any realistic flying vehicle com-
pletely would be a task of immence difficulty. The
problem is to select the simplest approximate rep-
resentation that will permit the Successful determ-—
ination of the unknown parameters from measured data.

The linear equations describing the longitudin—~
al and lateral motion of an aircraft are well devel-
oped and have the form

(1)

Tx = A'x + B'u, x(0) = a

y = Cx + Du (2)
where x, u and y are the state, input and output
vector, respectively, and @ is the vector of initial
conditions,

Because T is a nonsingular matrix then by
letting

1 1

A=T A" and B =T 'B'
equation (1) can be modified to the more standard
form

X = Ax + Bu, x(0) = a (3)
The unknown parameters B are contained in all four
matrices A, B, C and D.

The modelling of an aircraft during large dist-
urbance manoeuvres or in extreme flight conditions
is a difficult task demanding the formulation of a
set of nonlinear equations

x = f(x, u, 8), x(0) = a (4)

y = 8(x, u, B) (5)
For the new families of STOL and VTOL aircraft non-
linear forms of their models must normally be used.

The problem of modelling a complicated system
raises the fundamental question of how complex the
model should be. Although a more complex model can
be justified for proper description of aircraft
motion it is not clear in the case of parameter est-
imation what should be the best relationship between
model complexity and measurement information. If
too many unknown parameters are sought for a limited
amount of data then a reduced reliability of evalua-

ted parameters can be expected, or attempts to iden-

tify all parameters might fail.

2,2 Parameter and state estimation

The second step of the identification forms the
parameter and state estimation, Several techniques
based upon methods of estimation theory are used.

An excellent review of them is given in (10),

The estimation methods minimize the optimality
criterion, termed the cost function. The cost fun-
ction often defines the equivalence in the Zadeh's
definition mentioned and it is expressed as a funct-
ional of the system output and the model output.

Two models are then said to be equivalent if the
value of the gost function is the same for both of

them,

Parameter estimation results in the determin-
ation of the numerical values of unknown parameters,
in the estimation of their accuracy and the accuracy
of the identification process. With the exception
of the simple methods state estimation is included
in the whole estimation process as its integral part.

2.3 Verification

Verification followes immediately the estimat-—
ion and sometimes may be a part of a solution of
identifiability problems. The purpose of verifica-
tion is to relate the results obtained to well-known
physical points of the system under investigation,
This approach can raise the question of the reliab-
ility of estimates in general and the problem of
correct mathematical modelling in particular, 1If
some inconsistency appears the whole problem of
identification is eventually reconsidered at the
characterization level.

3. ESTIMATION METHODS

There are several methods for the estimation of
aircraft parameters which are now quite well estab-
lished as the part of identification process. Their
basic differences are due to variety of assumptions
regarding an optimal criterion, the prior probabili-
ty, the appearance of external disturbances to the
system and the presence of measurement noise. It is
convenient to divide these methods into three groups,
namely the equation error methods, the output error
methods and the general maximum likelihood method.

3.1 The Equation Error Methods

The equation error methods represent the appli-
cation of the regression analysis to each state
equation separately minimizing the sum of squared
errors satisfying the equation. For these methods
it is, therefore, assumed that the input variables
and all state variables and their derivatives can be
obtained from measurement, and that only state vari-
able derivatives are corrupted by noise.

The cost function has the form

1 N . i g 2
Jr ] iEI (eri xri) (©)
r=1, 2, seses' @

where n and N are the number of state equations and
the number of data points, respectively. The index
E denotes the measured quantity. The least squares
solution is cbtained by finding the minimum of J.

3.2 The Output Error Methods

The output error methods minimize the errors
between the actual output and the model output
computed by using the same input. It is assumed
that only measured outputs are corrupted by noise
and that there are no gust or other flight disturb-
ances. The optimalization problem involved is a
nonlinear one and requires the use of iterative
methods. The modified Newton-Raphson method is
usually applied because of its good convergence
rate even for large number of unknown parameters.

The general scheme for the output error methods
is given in Fig. 1. Regarding the assumptions about



the probability distribution of measurement noise
and the a priori information about the unknown para-
meters three estimation techniques are considered.
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Fig.l Parameter Estimation using Output Error
Method

The measurement equation is
z=y+an 7

and the cost function is formed as

PO 5 S Sty S S S
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In these equations z is the measurement vector, n is
the vector of measurement errors, W] is the weight-
ing matrix, and T denotes a transpose matrix,

The cost function is minimized with respect to
the unknown parameters y, where yT = {aT, 8T},
After the kth iterations the new estimate of unknown
parameters is obtained as

¥ alwn. 7!

N 1
Yk-l 2 i=1 i1 &

1-1Hi

T = & Hl(zi-yi) )
where H is the sensitivity matrix. The jth column
of H is 3y/dy., where y. is the jth element in the
vector Y. J J

The error covariance matrix of unknown parame-
ters is

3 =T 2% N el o]
E{O-)(yv)'} = 0" (;LHWH] (10)
where E (.) is the expected value and v ds kit

ed from the weighted sum of squared residuals

(11)

It is assumed for this technique that in (7) n
is the random gaussian vector with zero mean and
covariance matrix Rj. The ML estimate of the un-
known parameters Y and unknown coefficients in Rj
can be obtained by maximizing the likelihood
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2
where |Ri| denotes the determinant of Rj.

The new estimate of unknown parameters y is
given as

N Lo -1 N 4
- - T=1 1 T-1
Ve = Yoy PGEHGRIR D EIRY (24-3)) (14
while the estimate of K] is found from
- 1 N T

A lower bound on the error covariance matrix
for the estimated parameters is given by the Cramer-
Rao inequality

’ (15)

. AP -
E{(yv)(y-v)'} =M
where M represents the Fisher information matrix
defined as
9L, 0L\ T

M=E {(5;)(57) }

(16)
The estimate of the information matrix can be fourd
from

(17)

The Bayesian estimation technique uses for the
parameter estimationm both the information contained
in measured data and the a priori information abeout
the parameters involved. Applying Bayesian rule
and treating Yy as a random gaussian vector with
mean value Yo and covariance Ry, then by minimizing
the posterior distribution the solution is obtained
in form

s B RS |
H; R B} X

o=g @ el
= +
Ye = Y- 2 * ik

=1 N 1 2
{Ry) (rv) + ;L H] R} (z;-3))} (18)
The estimate of R] is obtained from (14) whereas the
Cramér-Rao bound on the error covariance matrix of
the estimates is given as

=1 =1, N_T =1
i T,

3.3 The General Maximum Likelihood Method

3l
Hi} (19)

The general maximum likelihood method is cap~—
able of solving the most general identificatiom
problem including the presence of additive random
process noise in the equations of motion and random
disturbances corrupting the measured inputs and
outputs. The concept and application of this method
using Kalman filter (for a linear system) and ext-
ended Kalman filter (for a nonlinear system) is
presented in and

The scheme for the method is given in Fig. 2,
The state equation of the system under test can be
expressed as

x = f (x, u,B) +I'w (20)
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Fig.2 Parameter Estimation using Generalized
Maximum Likelihood Method.

where w is the process noise vector (assumed zero
mean and white with spectral density matrix Q).
The optimizing criterion is the likelihood function

. 1 PR
L(p) = - 5 ;5 (¢ y;)© 6 (z;7y;)-7 in 6] (21)
where G is the covariance matrix of residuals.

During the solution the filter recursively
processes measurement one at a time, and at each
point produces the minimum variance state estimate
based on all the data received up to that point.
The ML estimation is a batch processor, therefore
it uses the entire data record for each iterationm.
The estimates for the unknown parameters y (the
coefficients in ' and filter gain are also included)
and matrix G are found from equations (13)and (14)
respectively, replacing R] by G. Once Y and G are
obtained elements in R} and Q can be also estimated

).

3.4 Comparison of methods

The output error methods give biased estimates
when noise is present in measured state variables.
The methods are also very sensitive to bias errors
in measured data. Good fit exists only between
measured and computed derivatives of state variables.
The other disadvantage is the independence of each
equation which is to be minimized. On the other
hand the methods are very simple to apply both to
linear and nonlinear systems and they can be used
as a good start-up procedures for the iterative
methods.

The WLS estimation provides unbiased estimates
of unknown parameters provided that the mathematic-
al model is correct and there is no noise in the
measured inputs. The only significant cost is due
to inaccuracy in the measured output variables.

For the ML technique it is assumed that the
distribution of measured variables is known. There
is no a priori knowledge regarding the values of
unknown parameters y. If the gaussian distribution
is further assumed then the ML estimate is identical

to the minimum variance estimate. The cost function
for the ML technique is given as the negative like-
lihood function L(p).

In the Bayesian estimation technique the unkn-
own parameters are treated as random variables. The
optimum estimate is taken as the mean of the condit-
ional distribution p(y/z). This result is reminis-
cent to the basic concept of the ML estimation. If
the gaussian distribution for p(z/Y) and p(Y) is
adopted then the Bayesian estimate can be treated as
the minimum variance estimate with expanded cost
function

1

J = —-.g (z,~y )T Rl (z.-y.) +
2 i=1'"1 Yi LS L

1 T =1 N
+ 3 (v,)" Ry (vv,) + 3 fa [R,| (22)
which includes a penalty for departure from a priori
values Yo

If the statistical data of a priori values are
not available the Bayesian estimation can be simpli-
fied to the ML estimation with a priori weighting of
some or all parameters., The matrix R7l in equation
(18) is replaced by the weighting matrix taking into
account the confidence on the a priori known param-
eters,

If no process noise is present the general ML
estimation is reduced to the ML estimation and the
residuals are the output errors. For the case where
no measurement noise exists, the measurement noise
covariance R1 is identically zero. If all the states
and their derivatives are measured, then the like-
lihood function is the sum of squares of the equat-
ion errors at sampling times. Thus, the ML estimat-
es are identical to the equation error estimates.

4, ACCURACY AND SENSITIVITY

Very often the accuracy of an estimation proce-
dure is judged by deviations both in the parameters
of the mathematical model and in the output variables.
From the comparison of the estimation methods it
follows that the ML estimation provides the most
accurate estimate of unknown parameters. These
estimates are consistent, asymptotically normal and
efficient under very general conditions. The unknown
parameters, Y, form a random vector with mean value
Y and the lower bound on the covariance matrix M71,

The closeness of computed and measured outputs
may be defined by a criterion developed from the
cost function. For the ML estimation technique the
term lanll can be, therefore, adopted as a measure
for the fit error. The disadvantage of this criter-
ion is that it improves monotonically with the
increasing number of unknown parameters which could
result in accurate fit but inaccurate parameter
values due to identifiability problems.

The accuracy of estimated parameters is closely
related to the sensitivity. The concept of sensit-
ivity can be treated as the sensitivity of the
function y = g (x, u, B) with respect to the parame-
ters. This approach means that the system is sensi-
tive to changes in ome particular parameter if a
small change results in a large change in y. On the
other hand, if y changes by only a small amount when
a parameter is changed, y is insensitive with respe-
ct to that parameter and its estimation could result
in the ipaccurate value.
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The numerical values of the sensitivities are
included in the sensitivity and the information
matrix, In the first case the coefficient in the
jth row and kth column is formed-by the sum of
3yj (ti)/ ¥y over the number of data points,

It is shown in (6) that the jth row and kth
column in M is

N 3¢y T =1 3y 1 =1 3¢ =1 3G
Mjk igl(-aTj-) G (-aTk— 4 7 TI‘ G 3Yj G aYk (23)

For the ML estimation without process noise and
measurement noise in the input variables equation
(23) is simplified as

M.

Ly (24)

& 3y 3T gl 31
i&1 (ayj) Ry (ayk)

5. IDENTIFIABILITY

The concept of identifiability is usually
related to various problems comnected with the abil-
ity to identify the parameters in the model assumed
for the system. The first group of problems mentio-
ned is referred to the identifiability of the para-
meters of the system. They can be solved by finding
the maximum npumber of parameters, which can be iden-
tified from measurement of the system input - output
data, and their location in the matrices ’

The remaining problems are mostly connected
with the identifiability of a description of the
system which means the possibility of a numerical
solution of the estimationprocess and the reliability
of the estimates in terms of physically realistic
values and small error covariances for the parameters.
These identification problems are mainly influenced
by the design of the experiment, the adequacy of the
model, the number of unknown parameters and the
sensitivity of output variables to these parameters.

The design of an experiment represents the wide
range of characteristics, from which the input form
is the most important one. The basic demand on the
input is the proper excitation of all modes involved
within the frequency range of interest. In addition
it must not be possible to express the input as a
linear combination of system response variables.

An efficient tool for improving the identifia-
bility is the use of a priori known values of the
parameters from theoretical predictions, wind-tunnel
or previous flight measurement., Then the a priori
values can be included in the estimation procedure
as a set of fixed values, a set of values with
weights expressing their uncertainty (the a priori
weighting) and finally in the form of probability
distribution (the Bayesian estimation).

The identifiability of a description of the
system is discussed in (8) and (6) where other
approaches towards the improvement of the identi-
fiability are mentioned, too.

6. COMPUTING ALGORITHMS

Several computing algorithms for the estimat-
ion of aircraft parameters were published. The
most general ome is in using the generalized ML
estimation for a nonlinear system and including
some ways for solving the identifiability problems.
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The algorithm for the output error method and
a linear model is in (11) together with the corres-
ponding Fortran program. The ML estimation prece-
dure combined with general equations of motion of an
aircraft is developed in (12), Both of these prog-
rams were applied successfully to the analysis of
flight data of many different types of aircraft.

A lot of effort has been devoted to the develop-
ment of a computing algorithm and program at C.I.T.
which would cover the equation of error and output
error methods with various estimation techniques,
which would be applicable to linear as well as non-—
linear systems and which would be flexible enough
for solving various identifiability problems.

The main problem in this algorithm was to cover
both linear and nonlinear models with one set of
expressions. It consisted in finding general forms
for the constraint and sensitivity equations for
both systems. The solution has been, in the main,
found in the introduction of the augmented input
vector which includes nonlinear terms in x, ux and u,
as well as the input variables u (8),

The whole scheme was implemented on a small
16 bit word length computer using an intermediate
level interpretation language developed in (13),
This language offered considerable operational flex-
ibility and made the program very suitable for the
research in system identification.

7. FUTURE DEVELOPMENT

Considering the experience achieved and problems
met in the process of aircraft identification, and
assuming the future demands on the application of
estimation techniques, the topics for the further
research can be summarized as:-

1. extensive application of the generalized maxi-
mum likelihood technique, which considers the
measurement noise in the input variables and
the external disturbances, for theestimation
of the aircraft states and parameters. This
very general approach would cover the determin-—
ation and analysis of aircraft performance,
stability and control characteristics, and
handling and riding qualities,

2. identification of aerodynamic derivatives from
flight data for specific important flight
regimes (e.g. high angle of attack and trans-
onic flights, large disturbance combined man-
oeuvres) and unorthodox aircraft (STOL, VTOL)
design. This will require the continuing devel-
opment in methods for model structure determin-
ation and verification since the models in such
aircraft are not well known,

3. correlation of the flight tect results with
wind-tunnel results for high performance air-
craft and aircraft of special design,

4, development of methods for solving identifiab-
ility problems and the determination of the
effect of a stability augmentation system and
a human pilot on the identifiability of the
parameters,

5. development of methods for the design of optim—
al inputs for linear as well as nonlinear syst-—
ems. Modification of the optimal input for
pilot acceptability and case of implementation,



and flight test validation of optimal inputs.

8. EXAMPLES

As examples, the parameter estimation of two
different aircraft is presented. In both cases no
process noise and no measurement noise in the input
variables have been assumed. For the evaluation of
parameters the ML estimation technique with or with-
out a priori weighting has been used.

In the first example the data is taken from
the measurement of slender delta-wing research air-
craft in its longitudinal motion. The responses
were excited from the horizontal steady-state fligh-
ts at different airspeeds by the elevator deflec—
tion. Because of the input form used the airspeed
changes during the transient motion were negligible.
For the identification the time histories of the
elevator angle, N, rate of pitch, q, and vertical
acceleration, n,, were available.
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Fig.3 Measured and Computed Time Histories
using ML estimation (ae = 7.2 deg).
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In the second example, parameters of a fighter
aircraft are estimated. The lateral motion of the
aircraft was excited from diving bank-turn flight
using a short rudder pulse. The aileron and the
elevator were used only in the compensatory role.
The experiment was the preliminary one and the
aircraft was not fully instrumented. Consequently
the time histories of the rudder deflection, rate
of pitch, bank and pitch angle were not recorded.
This resulted in missing vital information on the
primary input and in inadequate data for the steady-
state conditions. The parameter estimation was
based on the time histories of the aileron deflect-
ion, £, rate of roll, p, rate of yaw, r, sideslip
vane, By,and lateral acceleration, ny. The starting
point for the analysis was selected at the time when
the rudder was assumed to be returning to its zero
deflection.

8.1 Slender Delta Wing Research Aircraft
Longitudinal Dynamics

Taking into account the wind-tunnel test and
preliminary flight test results, the perturbation
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Fig.4 Measured and Computed Frequency Response
Curves using ML estimation (ue = 7.2 deg)



equations of motion are considered in the form

2
+ +
+ qu + Zaza anqa
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The vertical acceleration can then be expressed as

En
u

* = 1 8 2
= n¥ Zaa + qu + Ze + Z 20

! (26)
+Z qu +Z na+2Zn+27Z.0+2
e na” " af 3

where u is the velocity,® is the pitch angle, a is
the angle of attack, and Z,, 24 and My are the
bias terms. All remaining parameters are defined
in (14),

For the parameter estimation, the linear
model with Z Mg = O was first used. The further
simplification was achieved by fixing parameters
Zq and Zh on their wind-tunnel values and parameter
Zn on values from the steady—state flights.
Comparison of measured and computer time histories

at a low angle of attack is given in Fig, 3. The
fit between the two output variables is very good.
The resulting parameters and the lower bounds on
their standard errors are presented in the third
column of Table 1. The estimated parameters accord
well with predictions.

The use of the linear model in the case of low
angle of attack (ag = 7.2 deg.) was also substanti-
ated by comparing previous results with those from
the ML estimation in the frequency domain, and the
ML estimation with a priori weighting and the non-
linear model having Zpa = Mna = O. The a priori
values were taken from the linear case with weights
proportional to their standard errors.

The values of estimated parameters are in the
fourth and fifth column of Table 1, whereas the
measured and computed frequency response curves
are plotted. in Fig. 4. The results of the two
approaches mentioned did not produce significantly
different values of parameters. The estimates of
variance sz(nz), however, can be considered as
significantly different. The measure for signifi-
cant difference in parameters is based on 20
confidence intervals, and that for those in vari-
ances of measurement noise on the critical value
for their ratio.

In the second test case of a high angle of

TABLE 1. Predicted and Estimated Parameters by ML Estimation with Lower Bounds
on their Standard Errors.
Wy 7.2 deg. a, = 20.3 deg.
ITEM |PRED. LT SORD NONLINEAR PRED . LINEAR NONLINEAR
TIME DOMAIN | FREQ. DOMAIN HBaE e a2
Z |- 1.74]- 1.52 (0.03)|- 1.49 (0.06) [- 1.54 (0.03) |- 1.02| 1.43 (0.06)|- 1.48 (0.04)
Zaz =ik 25 = = = 2 (1) = = el (4)
Zea - - - - 0.5 (0.4) - - - 0.9 (2)
T - - - - - - -0.6 (2)
z |- 0.38 - - - 0.35 (0.01) |- 0.26 - - 0.23 (0.01)
z - - - - 0.009 (0.001) - - - 0.006 (0.002)
Z 0 0.0006 - 0.0020 0 0.020 0.020
zé 0 - 0.0003 - 0.0009 0 0.008 0.008
M |- 6.85[- 5.37 (0.9) |- 5.8 (0.2) [- 5.42 (0.09) [- 0.65| - 1.0 *)(0.1) |- 0.97 (0.09)
Mo |- 1.631- 1.99  (0.06)|- 1.7 (0.1) |- 2.21 (0.06) [~ 1.1 | = 1.03 *) (0.07)|- 0.81 (0.06)
M - - - 3 (5) - - - 73 (11)
MqOl I 5 = - 17 (3) = - 50 (8)
Mo - - - = = - 178 (37)
M| 12,6 |- 1401 (0.2) | -13.0 (0.4) |- 14,07 (0.02) |- 3.4 | - 3.22 (0.07)| - 3.23 (0.06)
M. - - - - 0.08 (0.03) - - - 0.17 (0.02)
M 0 0.013 - 0.018 ) 0.030 0.034
52 (q) - 2.3 x 107 - 2.1 x 1075 = 2.3 x 107 2.4 x 1075
s (n¥) - 4.8 x 1076 - 2.7 x 1076 - 19.5 x 1076 7.0 x 1076
ln|R1| - |- 229 i - 23.6 - - 21.5 -22.5

*) strong correlation
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Fig.4 Measured and Computed Frequency Response
Curves using ML estimation (a_ = 7.2 deg)
- Concluded. -

attack (ae = 20.3 deg), the linear model was proved
to be inadequate. This follows from the comparison
of the measured and computed output time histories
presented in Fig. 5 and Fig. 6 for the linear model
and the nonlinear model with a priori weighting.
The substantial improvement of the fit in the
vertical acceleration is apparent and is confirmed
by the numerical values of corresponding variance
estimates in Table 1.

In addition to these comparisons the time
histories of residuals in the vertical acceleration
and the corresponding autocovariance functions were
computed and plotted as in Fig. 7. The autocovari-
ance function for the nonlinear model is quite
close to that assumed for the random white noise.

The use of the nonlinear model also had the
significant effect on the damping parameter My where-
as the remaining parameters from the linear model
and their counterparts in the nonlinear model do
not differ significantly. These results are given
in the second part of Table 1. The strong correla-
tion between Mg and M. in the linear case was
removed by the addition of nonlinear terms.

The importance of proper input form in this
experiment is demonstrated on the estimates of the
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Fig.5 Measured and Computed Time Histories
using ML estimation. Linear model,
ag = 20.3 deg.

lift-curve slope parameter Zg from the two test runs,
The flight conditions for the two runs were the same
but the applied pulse inputs differed in time

length as shown in Fig. 8. The resulting harmonic
content (Fourier transform) for the two inputs are
also presented in Fig. 8.

The values of Zy and coefficients in the
sensitivity and information matrices related to
this parameter are given in Table 2. The use of
sharp pulse in Run 2 resulted in an inaccurate
value of Zg due to small excitation of nz and low
sensitivities in the two output variables with
respect to Zy.

8.2 Fighter Aircraft — Lateral Dynamics

The linearized equations of motion for a



fighter aircraft are
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where ¢ is the bank angle, Kg is the aerodynamic
correction of sideslip vane, xy is the distance of
sideslip vane with respect to aircraft c¢.g., and
the indices E and e denote the measured and steady-
state values respectively. The remaining parameters
are explained in

Assuming Y, Y. , Yy and xy as known values
the model incluges 21 unknown parameters together
with the four initial conditions pgy, rg, Bg and ¢o»
Because of the limited information contained in

the measured data, the first estimate included only
five stability parameters and three bias terms as
unknown parameters. The remaining parameters were
fixed on theoretical or wind-tunnel values, or on
values estimated from recorded time histories. The
resulting estimates are given in the first column
of Table 3.

In the following estimation, additional unknown
parameters have been included using the previous
results for the a priori weighting. After several
successive computing runs, all unknown parameters
were evaluated at least once. Their final values
are summarized in the last column of Table 3.

The substantial improvement in the fit of all
outputs is apparent from the estimates of variances
and logarithm of |Rj| . The measured time histories
of the output variables from the last computing
run are plotted in Fig., 9. The imperfection of
the fit may be caused by a rudder motion not having
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TABLE 2. Estimated Parameters and
Sensitivities for two Different
Inputs ‘
ITEM RUN 1 RUN 2
Za -1.29 (0.02) -1.69 (0.06)
g 6 9
L09/ez, | 127 0.017
N
.L.9n%/3Z ~-1.409 -0.0126
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Fig.8 Different Input Forms used and their
Harmonic Content.

been accounted for and/or by a coupling of the
lateral and longitudinal motionm.

The test run presented was executed under
buffet conditions (high angle of attack and high
Mach number) for which the reliable estimates of
stability derivatives were not available. It is,
therefore, not possible to draw any serious conclus-—
ions from the comparison of estimated and predicted
values.

9. CONCLUSION

The most advanced techniques for the evaluation
of aerodynamic derivatives from flight test data
are based on the identification of an aircraft.

As the results of the identification aircraft
parameters and their accuracies are estimated. 1In
addition, the accuracy of the whole process can be
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Fig.9 Measured and Computed Time Histories
using ML estimation, Fighter Aircraft.

evaluated and some idea about the correctness of
the mathematical model for an aircraft can be found.
The identification procedure includes three steps,
namely characterization, parameter estimation and
verification.

Characterization is a qualitative operation
defining the structure of a model describing the
motion of the aircraft under test. The problem is
to select the simplest approximate representation
that will permit the successful determination of
the unknown parameters from measured data.

For parameter estimation three methods are
usually used. The general maximum likelihood (ML)
method is capable of solving the most general iden-
tification problem including the presence of add-
itive random process noise in the equations of
motion and random disturbances corrupting the



TABLE 3. Predicted and Estimated Parameters by ML Estimation
with Lower Bound on their Standard Errors.
BN} AR Es;§§igns s
Lp S A =, Z.3 (0.3) = A9 (0.1)
L. = A7 = - 4.6 (0.7)
LB = B - 120 (7) =¥ b2 (1)
Np 0.24 - 0.068  (0.005)
Nr = 48Xl 0.8 (0.1) 0.619 (0.008)
NB 14 16.8 (0.3) 16.74 (0.07)
Y8 - 0.20 - 0.17 (0.01) - 0.182 (0.009
Lo - 160 (9) 33 (6)
N, = 13 (1) 3.2 (0.8)
. - 2.6 (0.4) 1.3 (0.3)
KB 1 = 1.53 (0.06)
P, - 36.9 - - 38 (3)
r, 6.36 = 6.1 (0.3)
Bo - 3.06 < - 3.0 (0.1)
¢o - 14.4 = - 14 (3)
Py 11.4 = 14 (2)
r, 0.63 * 3.3 (0.5)
g 0 -~ ~ Bl (0.2)
n;e 0.04 = 0.07 (0.03)
s2(p) ¥ 517 120
52 (x) - 5L 2.6
sz(Bv) - 1.0 0.65
sz(n;) - 0.031 0.029
Eanll - 4.4 1.8
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DISCUSSION

B.E. Karlin (Kiryat-Tivon, Israel): What methods
do you use in order to filter the noise out of the
measurement?

V. Klein: The measured data usually possesses high
signal to noise ratio, therefore no pre-filtering
is used prior to the application of any of the
methods for system identification.

These methods work also as a filter and enable
us to reconstruct the flight path and to estimate
measurement and process noise characteristics.



